Transcritical riddling in a system of coupled maps.
نویسندگان
چکیده
The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state.
منابع مشابه
Transcritical loss of synchronization in coupled chaotic systems
The synchronization transition is described for a system of two asymmetrically coupled chaotic oscillators. Such a system can represent the two-cluster state in a large ensemble of globally coupled oscillators. It is shown that the transition can be typically mediated by a transcritical transversal bifurcation. The latter has a hard brunch that dominates the global dynamics, so that the synchro...
متن کاملRiddling and chaotic synchronization of coupled piecewise-linear Lorenz maps
Abstract We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to the basin of infinity in an arbitrarily fine scale, what has serious consequences on the predictability of the final state for such a coupled ...
متن کاملNew Riddling Bifurcation in Asymmetric Dynamical Systems
We investigate the bifurcation mechanism for the loss of transverse stability of the chaotic attractor in an invariant subspace in an asymmetric dynamical system. It is found that a direct transition to global riddling occurs through a transcritical contact bifurcation between a periodic saddle embedded in the chaotic attractor on the invariant subspace and a repeller on its basin boundary. Thi...
متن کاملDesynchronization of chaos in coupled logistic maps.
When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained in which the motion is restricted to an invariant manifold of lower dimension than the full phase space. Riddling of the basin of attraction arises when particular orbits embedded in the synchronized chaotic state become transversely unstable while the state remains attracting on the aver...
متن کاملTransverse instability and riddled basins in a system of two coupled logistic maps
Riddled basins denote a characteristic type of fractal domain of attraction that can arise when a chaotic motion is restricted to an invariant subspace of total phase space. An example is the synchronized motion of two identical chaotic oscillators. The paper examines the conditions for the appearance of such basins for a system of two symmetrically coupled logistic maps. We determine the regio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 63 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2001